If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18-39y=-6y^2
We move all terms to the left:
18-39y-(-6y^2)=0
We get rid of parentheses
6y^2-39y+18=0
a = 6; b = -39; c = +18;
Δ = b2-4ac
Δ = -392-4·6·18
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-33}{2*6}=\frac{6}{12} =1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+33}{2*6}=\frac{72}{12} =6 $
| 3(x+2)+x(x=-3)(x-1)(x-5) | | 15v-9(2)=222 | | -35x=35x^2 | | 6.59-3.1(3.9+13.2x)=-9.3(x-10.8) | | 9x^2+45x+112=0 | | 4(y-6)=y | | 2x^2-16x=-50 | | 29-2x=-5 | | -16x^2+52x+7=9 | | 3e-5+16e=52 | | (7x+20)=90 | | 2x+8.95=23.65 | | x+x/2=20 | | 4(x+2)^2-180=0 | | 6=-3k+9k^2 | | (x−3)(x−2)=0 | | 50-2x=36 | | 7x-12-x=28 | | 0.5x=95 | | (5x+10)+(3x+18)=180 | | 5c^2+12c+6=0 | | 3p-8=36 | | 1+2x/3+4-x/7=8/21 | | p^2+8p-7=0 | | 32+8x=16x | | z^2+3z-7=z | | 11x+2x^2+6=0 | | 3.0=1.5b | | -1.1(1+11.3v)-0.5=-9.9(-13.8v+9.3)+9.2 | | -4m^2+2m-11=-5m^2 | | 5x+x(x)=36 | | 3x+3-2×=7+x-6 |